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ABSTRACT 
Data-intensive applications involving the analysis of large 
datasets often require large amounts of compute and storage 
resources, for which data locality can be crucial to high 
throughput and performance. We propose a “data diffusion” 
approach that acquires compute and storage resources 
dynamically, replicates data in response to demand, and schedules 
computations close to data. As demand increases, more resources 
are acquired, thus allowing faster response to subsequent requests 
that refer to the same data; when demand drops, resources are 
released. This approach can provide the benefits of dedicated 
hardware without the associated high costs, depending on 
workload and resource characteristics. To explore the feasibility 
of data diffusion, we offer both a theoretical and an empirical 
analysis. We define an abstract model for data diffusion, introduce 
new scheduling policies with heuristics to optimize real-world 
performance, and develop a competitive online cache eviction 
policy. We also offer many empirical experiments to explore the 
benefits of dynamically expanding and contracting resources 
based on load, to improve system responsiveness while keeping 
wasted resources small. We show performance improvements of 
one to two orders of magnitude across three diverse workloads 
when compared to the performance of parallel file systems with 
throughputs approaching 80 Gb/s on a modest cluster of 200 
processors. We also compare data diffusion with a best model for 
active storage, contrasting the difference between a pull-model 
found in data diffusion and a push-model found in active storage. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage and Management – storage 
hierarchies 

General Terms 
Algorithms, Management, Measurement, Performance, Design. 

Keywords 
Data diffusion, data management, data-aware scheduling, Falkon 

1. INTRODUCTION 
The ability to analyze large quantities of data has become 
increasingly important in many fields. To achieve rapid 
turnaround, data may be distributed over hundreds to thousands of 
computers. Traditional techniques commonly found in scientific 
computing (i.e., the reliance on parallel file systems with static 
configurations) do not scale to today’s largest systems for data-
intensive applications, as the rate of increase in the number of 
processors outpaces parallel file system performance.  

For example, a cluster we used in our experiment (with 316 
processors) has a parallel file system rated at 1 GB/s, yielding 3.2 
MB/s per processor of bandwidth. The second largest open 
science supercomputer, the IBM Blue Gene/P at Argonne 
National Laboratory, has 160K processors and a parallel file 
system rated at 65 GB/s, yielding a mere 0.4 MB/s per processor. 
That is an 8X reduction in bandwidth per processor between a 
cluster from 2002 and one from 2009. This trend will likely 
continue, with advances in many-core processors expected to 
increase the number of cores two orders of magnitude over the 
next decade.  

We argue that in such circumstances, data locality is critical to the 
successful and efficient use of large distributed systems for data-
intensive applications [1, 2]. One approach to achieving data 
locality—adopted by Google [3, 4]—is to build large compute-
storage farms dedicated to storing data and responding to user 
requests for processing. However, such approaches can lead to 
idle resources if load varies over time and the data of interest.  

We propose an alternative data diffusion approach [5], in which 
resources required for data analysis are acquired dynamically 
from a local resource manager (LRM), in response to demand. 
Resources may be acquired either “locally” or “remotely”; their 
location matters only in terms of associated cost tradeoffs. Both 
data and applications “diffuse” to newly acquired resources for 
processing. Acquired resources and the data that they hold can be 
cached for some time, allowing more rapid responses to 
subsequent requests. Data diffuses over an increasing number of 
processors as demand increases, and then contracts as load 
reduces, releasing processors back to the LRM for other uses.  

Data diffusion involves a combination of dynamic resource 
provisioning, data caching, and data-aware scheduling. The 
approach is reminiscent of cooperative caching [6], cooperative 
web-caching [7], and peer-to-peer storage systems [8]. Other data-
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aware scheduling approaches tend to assume static resources [9, 
10], in which a system configuration dedicates nodes with roles 
(i.e., clients, servers) at startup and no support is provided to 
increase or decrease the ratio between client and servers based on 
load. In our approach, however, we need to dynamically acquire 
not only storage resources but also computing resources. In 
addition, datasets may be terabytes in size, and data access is for 
analysis (not retrieval). Further complicating the situation is our 
limited knowledge of workloads, which may involve many 
different applications. In principle, data diffusion can provide the 
benefits of dedicated hardware without the associated high costs.  

The performance achieved with data diffusion depends crucially 
on the characteristics of application workloads and the underlying 
infrastructure. As a first step toward quantifying these 
dependences, we conducted experiments [5] with both micro-
benchmarks and a large-scale astronomy application and showed 
that data diffusion improves performance relative to other 
approaches, as well as provides improved scalability as 
aggregated I/O bandwidth scaled linearly up to 64 nodes.  

This paper is an evolution in both breadth and depth of data 
diffusion as presented in [5]. In search for a deeper understanding, 
we have defined a data diffusion abstract model (Section 3.1). We 
also discuss the data-aware scheduler (Section 2.2) and improved 
scheduling policies with heuristics to optimize real-world 
performance (Section 2.2). Moreover, as an initial provably sound 
algorithm we offer 2Mark, an O(NM)-competitive caching 
eviction policy (Section 3.2), for a constrained problem on N 
stores each holding at most M pages. This is the best possible such 
algorithm with matching upper and lower bounds (barring a 
constant factor). 

In broadening the scope of the original work, we have explored 
the benefits of dynamic resource provisioning (our previous work 
investigated only static resource provisioning), which allows the 
set of both compute and storage resources to expand and contract 
based on load, to improve system responsiveness while keeping 
wasted resources under control. We explored this space with two 
workloads, the monotonically increasing workload (Section 4.1) 
and the sin-wave workload (Section 4.2). We also explored the 
all-pairs workload [11] (Section 4.3), which allows us to compare 
data diffusion with a best model for active storage [12]. 
Experiments are performed on a subset of a 316-processor cluster.  

The contributions of this paper lie in the deeper analysis of data 
diffusion at both the theoretical and practical levels. We present 
an O(NM)-competitive algorithm for the scheduler as well as a 
proof of its competitive ratio, define new heuristics to improve 
scheduling decisions, explore varying arrival rate workloads to 
stress the dynamic resource provisioning, and compare data 
diffusion with the best-case model of active storage. 

2. DATA DIFFUSION ARCHITECTURE  
We implement data diffusion [5] in the Falkon task dispatch 
framework [13]. This section describes Falkon and data diffusion.  

2.1 Falkon and Data Diffusion 
To enable the rapid execution of many tasks on distributed 
resources, Falkon combines (1) multilevel scheduling [14] to 
separate resource acquisition (via requests to batch schedulers) 
from task dispatch and (2) a streamlined dispatcher to achieve 
several orders of magnitude higher throughput (487 tasks/s) and 
scalability (54K executors, 2M queued tasks) than other resource 

managers [13]. Recent work has achieved throughputs in excess 
of 3750 tasks/s and scalability up to 160K processors [15].  

Falkon is structured as a set of (dynamically allocated) executors 
that cache and analyze data; a dynamic resource provisioner 
(DRP) that manages the creation and deletion of executors; and a 
dispatcher that dispatches each incoming task to an executor. The 
provisioner uses tunable allocation and deallocation policies to 
provision resources adaptively. Individual executors manage their 
own caches, using local eviction policies, and communicate 
changes in cache content to the dispatcher. The dispatcher sends 
tasks to nodes that have cached the most needed data, along with 
the information on how to locate needed data; executors access 
needed data from local disk, peer executors, or persistent storage. 

To support data-aware scheduling, we implement a centralized 
index within the dispatcher that records the location of every 
cached data object; this is similar to the centralized NameNode in 
Hadoop’s HDFS [16]. This index is maintained as a loosely 
coherent entity with the contents of the executor’s caches via 
periodic update messages generated by the executors. Each 
executor maintains a local index to record the location of its 
cached data objects. This hybrid architecture provides a good 
balance between latency to the data and good scalability. A prior 
study [5] showed that a centralized index can often perform better 
than a distributed index at modest scales (up to thousands of 
processors).  

Falkon supports the queuing of incoming tasks, whose length 
triggers the dynamic resource provisioning to allocate resources 
via GRAM4 [17] from the available set of resources, which in 
turn allocates the resources and bootstraps the executors on the 
remote machines. The scheduler sends tasks to compute nodes, 
along with the necessary information about where to find related 
input data. Initially, each executor fetches needed data from 
remote persistent storage. Subsequent accesses to the same data 
results in executors fetching data from other peer executors if the 
data is already cached elsewhere. The current implementation 
runs a GridFTP server [18] at each executor, which allows other 
executors to read data from peer caches. If a data item is not found 
at any of the known locations, it attempts to retrieve the item from 
persistent storage; if this also fails, the respective task fails. 

In our experiments, we assume data follows the normal pattern 
found in scientific computing, namely, write-once/read-many (the 
same assumption HDFS makes in the Hadoop system [16]). Thus, 
we avoid complicated and expensive cache coherence schemes 
other parallel file systems enforce. We implement four cache 
eviction policies: Random, FIFO, LRU, and LFU [6]. Our 
empirical experiments all use LRU; we will study the other 
policies, including additional ones such as LRV [19], in future 
work. 

2.2 Data-Aware Scheduler 
Data-aware scheduling is central to data diffusion, since 
harnessing data locality in application access patterns is critical to 
performance and scalability. We implement four dispatch policies.  

The first-available (FA) policy ignores data location information 
when selecting an executor for a task; it simply chooses the first 
available executor and provides the executor with no information 
concerning the location of cached data objects. The executor must 
fetch all data needed by a task from persistent storage. This policy 
is used for experiments not using data diffusion. 



 

The max-compute-util (MCU) policy leverages data location 
information, maximizing resource utilization even at the 
potentially higher cost of data movement. It sends a task to an 
available executor, preferring ones with the most local data.  

The max-cache-hit (MCH) policy uses information about data 
location to dispatch each task to the executor with the largest 
amount of data needed by that task. If that executor is busy, task 
dispatch is delayed until the executor becomes available. This 
strategy reduces data movement operations compared to FA and 
MCU but may lead to poor processor utilization. 

The good-cache-compute (GCC) policy is a hybrid MCH/MCU 
policy. The GCC policy sets a threshold on the minimum 
processor utilization to decide when to use MCH or MCU. We 
define processor utilization to be the number of processors with 
active tasks divided by the total number of processors allocated. 
MCU used a threshold of 100%, trying to keep all allocated 
processors in use. We find that relaxing this threshold (e.g., to 
90%) works well in practice, since it keeps processor utilization 
high and it gives the scheduler flexibility to improve cache hit 
rates significantly when compared to MCU alone.  

The scheduler is window-based. It takes the scheduling window W 
size (i.e., |W| as the number of tasks to consider from the wait 
queue when making the scheduling decision), and it starts to build 
a per task scoring cache hit function. If at any time a best task is 
found (i.e., achieves a 100% hit rate to the local cache), the 
scheduler removes this task from the wait queue and adds it to the 
list of tasks to dispatch to this executor. This process is repeated 
until the maximum number of tasks are retrieved and prepared to 
be sent to the executor. If the entire scheduling window is 
exhausted and no best task is found, the m tasks with the highest 
cache hit local rates are dispatched. In the case of MCU, if no 
tasks are found that would yield any cache hit rates, then the top m 
tasks are taken from the wait queue and dispatched to the 
executor. For MCH, if no tasks are returned, the executor returns 
to the free pool of executors. For GCC, the aggregate CPU 
utilization at the time of scheduling decision determines which 
action to take. Prebinding of tasks to nodes can negatively impact 
cache-hit performance if multiple tasks are assigned to the same 
node, and each task requires the entire cache size, effectively 
thrashing the cache contents at each task invocation. In practice, 
we find that per task working sets are small (megabytes to 
gigabytes) while cache sizes are bigger (tens of gigabytes to 
hundreds of gigabytes), making the worst case not common. 

The scheduler’s complexity varies with the policy used. For FA, 
the cost is constant, as it simply takes the first available executor 
and dispatches the first task in the queue. MCH, MCU, and GCC 
are more complex, with a complexity of O(|Ti| + min(|Q|, W)), 
where Ti is the task at position i in the wait queue and Q is the 
wait queue. This could equate to many operations for a single 
scheduling decision, depending on the maximum size of the 
scheduling window and queue length. Since all data structures 
used to keep track of executors and since files use in-memory 
hash maps and sorted sets, operations are efficient. In another 
study [20], we have shown that the data-aware scheduler can 
perform thousands of scheduling decisions per second, effectively 
netting scheduling costs on the order of milliseconds per decision.  

3. THEORETICAL EVALUATION 
We define an abstract model that captures the principal elements 
of data diffusion in a manner that allows analysis. We first define 

the model and then analyze the computational time per task, 
caching performance, workload execution times, arrival rates, and 
node utilization. We also present an O(NM)-competitive 
algorithm for the scheduler and give a proof of its competitive 
ratio.  

3.1 Abstract Model 
Our abstract model includes computational resources on which 
tasks execute and storage resources on which data needed by the 
tasks is stored. Simplistically, we have two regimes: the working 
data set fits in cache, S!W, where S is the aggregate allocated 
storage and W is the working data set size; and the working set 
does not fit in cache, S<W. We can express the time T required 
for a computation associated with a single data access as follows, 
both depending on Hl (data found on local disk), Hc (remote 
disks), or Hs (centralized persistent storage). 

S !W : (Rl+C) " T ! (Rc+C) 
S <W : (Rc+C) ! T < (Rs+C) 

Here Rl, Rc, Rs are the average cost of accessing local data (l), 
cached data (c), or persistent storage (s), and C is the average 
amount of computing per data access. The relationship between 
cache hit performance and T can be expressed as follows. 

S !W : T = (Rl+C)*HRl + (Rc+C)*HRc 
S <W : T = (Rc+C)*HRc + (Rs+C)*HRs 

Here HRl is the cache hit local disk ratio, HRc is the remote cache 
ratio, and HRs is the cache miss ratio; HRl/c/s = HL/C/S/(HL + HC + 
HS). We can merge the two cases such that the time to complete 
task i is TKi = C + Rl*HRl + Rc*HRc + Rs*HRs. 

The time needed to complete an entire workload D with K tasks 
on N processors is  

TN(D) = !
"

K

i
iTK

1
 

where D is a function of K, W, A, C, and L. 
 
We define speedup to be SP = T1(D) / TN(D). Efficiency is 
defined as EF = SP / N. 

The maximum task arrival rate (A) that can be sustained is   
S !W : N*P/(Rl+C) ! Amax ! N*P/(Rc+C) 
S <W : N*P/(Rc+C) ! Amax < N*P/(Rs+C) 

where P is the execution speed of a single node. These regimes 
can be collapsed into a single formula: A = (N*P/T)*K. 

We can express a formula to evaluate tradeoffs between node 
utilization (U) and arrival rate; counting data movement time in 
node utilization, we have U = A*T/(N*P). 

Although the presented model is simplistic, it accurately reflects 
the time to complete various workloads [5] for an astronomy 
application [21], with an average of 6% model error and a 
standard deviation of 5%. Because of space constraints, we do not 
present the details of this validation. 

3.2 O(NM)-Competitive Caching  
Among known algorithms with provable performance for 
minimizing data access costs, none can be applied to data 
diffusion, even if restricted to the caching problem. For instance, 
LRU maximizes the local store performance but is oblivious of 
the aggregate cached data and persistent storage. Towards 
developing an algorithm with provable performance, we show that 



 

the difficulty lies not only in there being multiple stores, but also 
in the possibility of there being multiple copies of the same object 
in different stores.  For the case where there cannot be such 
multiple copies, we give an O(NM) competitive ratio online 
algorithm [22]. An online algorithm solves a problem without 
knowledge of the future, while an offline optimal [22] is a 
hypothetical algorithm that has knowledge of the future. The 
competitive ratio is the worst-case ratio of their performance and 
is a measure of the quality of the online algorithm, independent of 
a specific request sequence or workload characteristics.  

In the constrained version of the problem there are N stores, each 
capable of holding M objects of uniform size. Requests are made 
sequentially to the system, each specifying a particular object and 
a particular store. If the store does not have the object at that time, 
it must load the object to satisfy the request. If the store is full, it 
must evict one object to make room for the new object. If the 
object is present on another store in the system, it can be loaded 
for a cost of Rc, which we normalize to 1. If it is not present in 
another store, it must be loaded from persistent storage for a cost 
of Rs, which we normalize to cs RRs /" . Note that if Rs < Rc, we 
can use LRU at each node instead of 2Mark to maintain 
competitive performance. We assume Rl is negligible. 

All stores in the system are allowed to cooperate (or be managed 
by a single algorithm with complete state information). This 
approach allows objects to be transferred between stores in ways 
not directly required to satisfy a request (e.g., to back up an object 
that would otherwise be evicted). Specifically, two stores may 
exchange a pair of objects for a cost of 1 without using extra 
memory space. Further, executors may write to an object in their 
store. The system is not allowed to keep multiple copies of an 
object simultaneously on different stores. 

We propose an online algorithm 2Mark  (using the well-known 
marking algorithm [22] at two levels) for data diffusion. Let the 
corresponding optimum offline algorithm be OPT . For a 
sequence # , let )(#2Mark  be the cost 2Mark  incurs to handle 
the sequence, and define )(#OPT  similarly. 2Mark  may mark 
and unmark objects in two ways, designated local-marking an 
object and global-marking an object. An object may be local-
marked with respect to a particular store (a bit corresponding to 
the object is set only at that store) or global-marked with respect 
to the entire system. 2Mark  interprets the request sequence as 
being composed of two kinds of phases, local-phases and global-
phases. A local-phase for a given store is a contiguous set of 
requests received by the store for M distinct objects, starting with 
the first request the store receives. A global-phase is a contiguous 
set of requests received by the entire system for NM distinct 
objects, starting with the first request the system receives. We 
prove that )())/(/2()( ## OPT2Mark $%%%& vsNMsMNM  
for all sequences # , which establishes that is O(NM)-
competitive. From the lower bound on the competitive ratio for 
simple paging [22], this is the best possible deterministic online 
algorithm for this problem, barring a constant factor.  

2Mark essentially uses an M-competitive marking algorithm to 
manage the objects on individual stores and the same algorithm on 
a larger scale to determine which objects to keep in the system as 
a whole. When a store faults on a request for an object that is on 
another store, it exchanges the object it evicts for the object 
requested (see Figure 1). We establish a bound on the competitive 

ratio by showing that every cost incurred by 2Mark  can be 
correlated to one incurred by OPT . These costs may be s-faults 
(in which an object is loaded from persistent storage for a cost of 
s), or they may be 1-faults (in which an object is loaded from 
another cache for a cost of 1). The number of 1-faults and s-faults 
incurred by 2Mark  can be bounded by the number of 1-faults 
and s-faults incurred by OPT  in sequence # .  

 

 
Because of our restricted file access patterns (write-once, read-
many), we do not worry about having multiple copies of the same 
object in different caches and keeping these caches synchronized.  

Consider the ith global phase. During this global phase, let OPT 
load objects from persistent storage u times, and exchange a pair 
of objects between stores v times, incurring a total cost of su+v. 
Every object loaded from persistent storage by 2Mark is 
globallymarked and not evicted from the system until the end of 
the global phase. Since the system can hold at most NM objects, 
the number of objects loaded by 2Mark in the ith global phase is 
at most NM. We claim OPT loads at least one object from 
persistent storage during this global phase. This is true if this is 
the first global phase as all the objects loaded by 2Mark have to 
be loaded by OPT as well. If this is not the first global phase, OPT 
must satisfy each of the requests for the distinct NM objects in the 
previous global phase by objects from the system and thus must s-
fault at least once to satisfy requests in this global phase.  

Within the ith global phase consider the jth local phase at some 
store X. The renaming of objects ensures that any object p 
removed from X because of a request for p at some other store Y is 
never requested again at X. Thus, the first time an object is 

Figure 1: Algorithm 2Mark  

Input:  Request for object p at store X  from sequence #
1 if p  is not on X  then 
2  if X  is not full then /* No eviction required */ 
3   if p  is on some store Y  then 
4    Transfer p  from Y  to X  
5   else 
6    Load p  to X  from persistent storage 
7   end 
8  else /* Eviction required to make space in X */ 
9   if all objects on X  are local-marked then 
10    local-unmark all /*Begins new local phase */ 
11   end 
12   if p is on some store Y  then 
13    Select an arbitrary local-unmarked object q on X  
14    Exchange q  and p  on X  and Y  
    /* X now has p  and Y  has q */ 15    if p  was local-marked on Y  then 
16     local-mark q  on Y  
17    end 
18   else /* p must be loaded from persistent storage */ 
19    if all objects in system are global-marked then 
20     global-unmark and local-unmark all objects 
          /*Begins new global phase & local phases at each store */ 
21    end 
22    if all objects on X  are global-marked then 
23     Select an arbitrary local-unmarked object q  on X  
24     Select an arbitrary store Y  with at least one global-unmarked 

object or empty space 
25     Transfer q  to Y , replacing an arbitrary global-unmarked 

object or empty space 
26    else 
27     Evict an arbitrary global-unmarked object q  on X  
28    end 
29    Load p  to X from persistent storage 
30   end 
31  end 
32 end 
33 global-mark and local-mark p



 

requested at X in this local phase, it is locally marked and remains 
in X for all future requests in this local phase. Hence, X can 1-fault 
for an object only once during this local phase. Since X can hold 
at most M objects, it incurs at most M 1-faults in the jth local 
phase. We claim that when j'1, OPT incurs at least one 1-fault in 
this local phase. The reasoning is similar to that for the ith global 
phase: since OPT satisfies each of the requests for M distinct 
objects in the previous local phase from cache, it must 1-fault at 
least once in this local phase. When j=1, however, it may be that 
the previous local phase did not contain requests for M distinct 
objects. There are, however, at most NM 1-faults by 2Mark in all 
the local phases in which j=1, for the N stores each holding M 
objects, in the ith global phase. 

Since OPT has the benefit of foresight, it may be able to service a 
pair of 1-faults through a single exchange. In this both the stores 
in the exchange get objects that are useful to them, instead of just 
one store benefiting from the exchange. Thus, since OPT has v 
exchanges in the ith global phase, it may satisfy at most 2v 1-
faults and 2Mark correspondingly has at most 2vM +NM 1-
faults. The second term is due to 1-faults in the first local phase 
for each store in this global phase. Thus the total cost in the ith 
global phase by 2Mark is at most sNM +2vM + NM, while that of 
OPT is at least s+v, since u(1 in every global phase.  

4. EMPIRICAL EVALUATION 
We measured the performance of the data-aware scheduler on 
various workloads, with both static (SRP) and dynamic (DRP) 
resource provisioning, and ran experiments on the 
Argonne/University of Chicago TeraGrid [23] (up to 100 nodes, 
200 processors). The Falkon service ran on an 8-core Xeon 2.33 
GHz, 2 GB RAM, Java 1.5, 100 Mb/s network, and 2 ms latency 
to the executors. Each node had a local disk with at least 50 GB 
free. The persistent storage was GPFS [24] with <1 ms latency to 
executors and had enough storage capacity to store the entire 
working set per workload.  

The three subsections that follow cover three diverse workloads: 
monotonically increasing (MI), sine-wave (SI), and all-pairs (AP). 
We use workloads MI and SI to explore the dynamic resource 
provisioning support in data diffusion and the various scheduling 
policies (e.g., FA, GCC, MCH, MCU) and cache sizes (e.g., 1 
GB, 1.5 GB, 2 GB, 4 GB, and 50 GB); the smaller cache sizes are 
artificially made smaller to explore the relationship between 
aggregate cache size and workload working set. We use the AP 
workload to compare data diffusion with active storage [11].  

4.1 Monotonically Increasing Workload 
The MI workload has a high I/O to compute ratio (10MB:10ms). 
The dataset is 100 GB (10K x 10 MB files). Each task reads one 
file chosen at random (uniform distribution) from the dataset, and 
computes for 10 ms. The arrival rate is initially 1 task/s and is 
increased by a factor of 1.3 every 60 seconds to a maximum of 
1000 tasks/s. The increasing function is 

) * 240,1000),3.1*(min 1 +&" , iAceilingA ii , which varies arrival rate A 
from 1 to 1000 in 24 distinct intervals, makes up 250K tasks and 
spans 1415 seconds. This workload aims to explore a varying 
arrival rate under a systematic increase in task arrival rate, to 
evaluate the scheduler’s ability to optimize data locality.  

We investigated the performance of the FA, MCH, MCU, and 
GCC policies, while analyzing cache size effects by varying node 
cache size (1 GB to 4 GB). We define several metrics: 

Demand (Gb/s): throughput needed to satisfy arrival rate 
Throughput (Gb/s): measured aggregate transfer rates 
Wait Queue Length: number of tasks ready to run 
Cache Hit Global: file access from a peer executor cache 
Cache Hit Local: file access from local cache 
Cache Miss: file accesses from the parallel file system  
Speedup (SP): SP = TN(FA) / TN(GCC|MCH|MCU) 
CPU Time (CPUT):  amount of processor time used 
Performance Index (PI): PI=SP/CPUT, normalized [0…1]  
Average Response Time (ARi): time to complete task i, 
including queue time, execution time, and communication costs 

The baseline experiment (FA policy) ran each task directly from 
GPFS, using dynamic resource provisioning. Aggregate 
throughput matches demand for arrival rates up to 59 tasks/s but 
remains flat at an average of 4.4 Gb/s beyond that. At the 
transition point when the arrival rate increased beyond 59, the 
wait queue length also started growing to an eventual maximum 
of 198K tasks. The workload execution time was 5011 seconds, 
yielding 28% efficiency (ideal being 1415 seconds).  

We ran the same workload with data diffusion with varying cache 
sizes per node (1 GB to 4 GB) using the GCC policy, optimizing 
cache hits while keeping processor utilization high (90%). The 
dataset was diffused from GPFS to local disk caches with every 
cache miss (the red area in the graphs); global cache hits are in 
yellow and local cache hits in green. The working set was 100 
GB, and with a per node cache size of 1 GB, 1.5 GB, 2 GB, and 4 
GB caches, we get aggregate cache sizes of 64 GB, 96 GB, 128 
GB, and 256 GB. The 1 GB and 1.5 GB caches cannot fit the 
working set in cache, while the 2 GB and 4 GB cache can.  

We first analyze the 1 GB cache size experiment (see Figure 2). 
Throughput keeps up with demand better than the FA policy, up 
to 101 tasks/s arrival rates (up from 59), at which point the 
throughput stabilizes at an average of 5.2 Gb/s. Within 800 
seconds, working set caching reaches a steady state with a 
throughput of 6.9 Gb/s. The overall cache hit rate was 31%, 
resulting in a 57% higher throughput than GPFS. The workload 
execution time is reduced to 3762 seconds, down from 5011 
seconds for the FA policy, with 38% efficiency.  

 
Figure 2: MI workload, 250K tasks, 10 MB:10 ms ratio, up to 

64 nodes using DRP, GCC policy, 1 GB caches/node 
The same experiment with 1.5 GB caches improved efficiency to 
89%, as a result of improved cache hit rates of 78%. Both the 1 
GB and 1.5 GB cache sizes achieve reasonable cache hit rates, 
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despite the fact that the cache sizes are too small to fit the working 
set in cache; the reason is that the data-aware scheduler looks 
deep (i.e., window size set to 2500) in the wait queue to find tasks 
that will improve the cache hit performance. 

Figure 3 shows results with 2 GB local caches (128 GB 
aggregate). Aggregate throughput is close to demand (up to the 
peak of 80 Gb/s) for the entire experiment. We attribute this good 
performance to the ability to cache the entire working set and then 
schedule tasks to the nodes that have required data to achieve 
cache hit rates approaching 98%. Note that the queue length never 
grew beyond 7K tasks, significantly less than for the other 
experiments (91K to 198K tasks long). With an execution time of 
1436 seconds, efficiency was 99%.  
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Figure 3: MI workload, 250K tasks, 10 MB:10 ms ratio, up to 

64 nodes using DRP, GCC policy, 2 GB caches/node 
Figure 4 summarizes the aggregate I/O throughput measured in 
each of the seven experiments we conducted. The solid bars are 
the average throughput achieved from start to finish, partitioned 
among local cache, remote cache, and GPFS; the thin black line is 
the “peak” (99th percentile sample) throughput achieved. The 
peak is interesting because of the progressive increase in job 
submission rate and may be viewed as a measure of how far a 
particular method can go in keeping up with application demands.  
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Figure 4: MI average and peak (99th percentile) throughput 
We see that the FA policy had the lowest average throughput of 4 
Gb/s, compared to between 5.3 Gb/s and 13.9 Gb/s for data 
diffusion (GCC, MCH, and MCU with various cache sizes), and 
14.1 Gb/s for the ideal case. In addition to having higher average 

throughputs, data diffusion also achieved significantly higher 
throughputs toward the end of the experiment (the black bar) 
when the arrival rates are highest, as high as 81 Gb/s (compared to 
6 Gb/s for the FA policy. Note also that GPFS file system load 
(the red portion of the bars) is significantly lower with data 
diffusion than for the GPFS-only experiments (FA), ranging from 
0.4 Gb/s to 3.6 Gb/s depending on the size of the caches. Remote 
caches showed a lower network load, with most policies being 
under 1 Gb/s with the exception of the MCU policy at 1.5 G/s. 

The performance index attempts to capture the speedup per 
processor time achieved (see Figure 5). Notice that while GCC 
with 2 GB and 4 GB caches each achieve the highest speedup of 
3.5X, the 4 GB case achieves a higher performance index of 1 as 
opposed to 0.7 for the 2 GB case. The reason is that fewer 
processor resources were used throughout the 4 GB experiment 
(17 CPU-hours instead of 24 CPU-hours). This reduction in 
resource usage was due to the larger caches, which in turn allowed 
the system to perform better with fewer resources for longer 
durations; hence, the wait queue did not grow as fast, thereby 
resulting in less aggressive resource allocation. Notice the 
performance index of the FA policy, which uses GPFS solely; 
although the speedup gains with data diffusion compared to the 
FA policy are modest (1.3X to 3.5X), the performance index of 
data diffusion is significantly more (2X to 34X). 
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Figure 5: MI workload PI and speedup comparison 
The response time is critical for interactive applications. We see a 
significant difference (500X) between the best response time 
(GCC, 3.1 seconds per task) and the worst response time (FA, 
1569 seconds). A principal factor influencing the average 
response time is the time tasks spend in the wait queue. In the 
worst (FA) case, the queue length grew to 198K tasks as the 
allocated resources could not keep up with the arrival rate. In 
contrast, the best (GCC) case queued up only 7K tasks at its peak.  

The experiments presented in this subsection show that large 
enough aggregate caches to hold the entire working set is 
important to achieve near-optimal performance, although smaller 
caches can still be effective as long as the scheduler inspects tasks 
deep in the wait queue. Furthermore, the ability to keep up with 
higher demands and keep wait queues short allows data diffusion 
to be a good candidate for data-intensive interactive applications. 

4.2 Sine-Wave Workload 
The previous subsection explored a workload with monotonically 
increasing arrival rates. To explore how well data diffusion deals 



 

with decreasing arrival rates, we define a sine-wave (SW) 
workload that follows the function (where time is elapsed minutes 
from the beginning of the experiment). 
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This workload aims to explore the data-aware scheduler’s ability 
to optimize data locality in the face of frequent joins and leaves of 
resources caused by variability in demand. This function is 
essentially a sine-wave pattern, in which the arrival rate increases 
in increasingly stronger waves, increasing up to 1000 tasks/s 
arrival rates. The working set is 1 TB large (100K files of 10 MB 
each), and the I/O to compute ratio is 10 MB:10 ms. The 
workload is composed of 2M tasks, where each task accesses a 
random file (uniform distribution) and takes 6505 seconds to 
complete in the ideal case. The testbed includes up to 100 nodes, 
with local disks of at least 50 GB free; we therefore set the cache 
size to 50 GB per node for these experiments (instead of the 1 GB 
to 4 GB in Section 4.1), since our aim here was to investigate the 
dynamic resource provisioning effectiveness on a variable arrival 
rate workload. 

Our first experiment consisted of running the SW workload with 
all computations running directly from the parallel file system and 
using 100 nodes with static resource provisioning. We see the 
measured throughput keep up with the demand up to the point 
when the demand exceeds the parallel file system peak 
performance of 8 Gb/s; beyond this point, the wait queue grew to 
1.4M tasks, and the workload needed 20491 seconds to complete 
(instead of the ideal case of 6505 seconds), yielding an efficiency 
of 32%. Note that although we are using the same cluster as in the 
only MI workload (Section 4.1), GPFS’s peak throughput is 
higher (8 Gb/s vs. 4 Gb/s) because of a major upgrade to both 
hardware and software in the cluster between running these 
experiments. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

N
od

es
 A

llo
ca

te
d

Th
ro

ug
hp

ut
 (G

b/
s)

Q
ue

ue
 L

en
gt

h 
(x

1K
)

Time (sec)

Cache Hit 
Local

Cache 
Miss 

Throughput 

Demand 

Queue 
Length

Node
Cache Hit 

Global

 
Figure 6: SW workload, 2M tasks, 10MB:10ms ratio, 100 

nodes, GCC policy, 50GB caches/node 
Enabling data diffusion with the GCC policy, setting the cache 
size to 50GB, the scheduling window size to 2500, and the 
processor utilization threshold to 90%, we get a run that took 6505 
seconds to complete (see Figure 6), yielding an efficiency of 
100%. We see the cache misses (red) decrease from 100% to 0% 
over the course of the experiment, while local cache hits (green) 
frequently make up 90%+ of the cache hits. Note that the data 
diffusion mechanism was able to keep up with the arrival rates 

throughout, with the exception of the peak of the last wave, when 
it was able to achieve only 72 Gb/s (instead of the ideal 80 Gb/s), 
at which point the wait queue grew to its longest length of 50K 
tasks. The global cache hits (yellow) is stable at about 10% 
throughout, which reflects the fact that the GCC policy is 
oscillating between optimizing cache hit performance and 
processor utilization around the configured 90% threshold.  

Enabling dynamic resource provisioning, Figure 7 shows the 
workload still manages to complete in 6697 seconds, yielding 
97% efficiency. To minimize wasted processor time, we set each 
worker to release its resource after 30 seconds of idleness. Note 
that upon releasing a resource, its cache is reset; thus, after every 
wave, cache performance is again poor until caches are rebuilt. 
The measured throughput does not fit the demand line as well as 
the static resource provisioning did, but it increases steadily in 
each wave and achieves the same peak throughput of 72 Gb/s 
after enough of the working set is cached.  
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Figure 7: SW workload, 2M tasks, 10MB:10ms ratio, up to 

100 nodes with DRP, GCC policy, 50GB caches/node 
In summary, we see data diffusion make a significant impact. 
Using the dynamic provisioning where the number of processors 
is varied based on load does not hinder data diffusion’s 
performance significantly (achieves 97% efficiency) and yields 
less processor time consumed (253 CPU hours as opposed to 361 
CPU hours for SRP and GCC and 1138 CPU hours for FA). 

4.3 All-Pairs Workload 
In previous work, several of us addressed large-scale data-
intensive problems with the Chirp [12] distributed file system. 
Chirp has several advantages, such as delivering an 
implementation that behaves like a file system and maintains most 
of the semantics of a shared file system. Moreover, Chirp offers 
efficient distribution of datasets via a spanning tree, making Chirp 
ideal in scenarios with a slow and high-latency data source. 
However, Chirp does not address data-aware scheduling. 
Therefore, when used by All-Pairs [11], it typically distributes an 
entire application working data set to each compute node local 
disk prior to the application running. We call the All-Pairs use of 
Chirp active storage. This requirement hinders active storage 
from scaling as well as data diffusion, making large working sets 
that do not fit on each compute node local disk difficult to handle, 
and producing potentially unnecessary transfers of data. Data 
diffusion transfers only the minimum data needed per job.  



 

To understand the comparison between data diffusion and the best 
model of active storage, we first define a common benchmark for 
data-intensive computing, namely, All-Pairs (AP). Variations of 
the AP problem occur in many applications, for example when we 
want to understand the behavior of a new function F on sets A and 
B or to learn the covariance of sets A and B on a standard inner 
product F [11]. The AP problem is easy to express in terms of two 
nested for loops over some parameter space. This regular structure 
also makes it easy to optimize its data access operations. 
Nevertheless, AP is a challenging benchmark for data diffusion, 
because of its on-demand, pull-mode data access strategy. 

In previous work [11], we conducted experiments with biometrics 
and data mining workloads using Chirp. The most data-intensive 
workload was where each function executed for 1 second to 
compare two 12 MB items, for an I/O to compute ratio of 24 
MB:1000 ms. At the largest scale (50 nodes and 500x500 problem 
size), we measured an efficiency of 60% for the active storage 
implementation, and 3% for the demand paging (to be compared 
to the GPFS performance we cite). These experiments were 
conducted in a campuswide heterogeneous cluster with nodes at 
risk for suspension, network connectivity of 100 Mb/s between 
nodes, and a shared file system rated at 100 Mb/s from which the 
data set needed to be transferred to the compute nodes.  

Because of differences in our testing environments, a direct 
comparison is difficult, but we compute the best case for active 
storage as defined in [11] and compare measured data diffusion 
performance against this best case. Our environment has 100 
nodes (200 processors) that are dedicated for the duration of the 
allocation, with 1 Gb/s network connectivity between nodes, and a 
parallel file system (GPFS) rated at 8 Gb/s. For the 500x500 
workload, data diffusion achieves a throughput that is 80% of the 
best case of all data accesses occurring to local disk (see Figure 
8). We computed the best case for active storage to be 96%. In 
practice, however, based on the efficiency of the 50-node case 
from previous work [11] that achieved 60% efficiency, we believe 
the 100-node case will not perform significantly better than the 
80% efficiency of data diffusion. Running the same workload 
through Falkon directly against a parallel file system achieves 
only 26% of the throughput of the purely local solution.  

To push data diffusion harder, we made the workload 10X more 
data-intensive by reducing the compute time from 1 second to 0.1 
seconds, yielding an I/O-to-compute ratio of 24 MB:100 ms (see 
Figure 9). For this workload, the throughput steadily increased to 
about 55 Gb/s as more local cache hits occurred. We found 
extremely few cache misses, thus indicating the high data locality 
of the AP workload. Data diffusion achieved 75% efficiency. 
Active storage and data diffusion transferred similar amounts of 
data over the network (1536 GB for active storage and 1528 GB 
for data diffusion with 0.1 s compute time and 1698 GB with 1 s 
compute time workload) and to and from the shared file system 
(12 GB for active storage and 62 GB and 34 GB for data diffusion 
for 0.1 s and 1 s compute time workloads, respectively). With 
such similar bandwidth usage, similar efficiencies were expected. 

Our comparison between data diffusion and active storage 
essentially involves a comparison of pushing versus pulling data. 
The active storage implementation pushes all the needed data for a 
workload to all nodes via a spanning tree. With data diffusion, 
nodes pull only the files immediately needed for a task, creating 
an incremental spanning forest (analogous to a spanning tree, but 
one that supports cycles) at runtime that has links both to the 

parent node and to any other arbitrary node or persistent storage. 
We measured data diffusion to perform comparably to active 
storage on our 200-processor cluster, but differences exist 
between the two approaches. Data diffusion depends more on 
having a well-balanced persistent storage for the amount of 
computing power, but it can scale to larger number of nodes 
because of the more selective nature of data distribution [20]. 
Furthermore, data diffusion needs to fit only the per task working 
set in local caches, rather than an entire workload working set as 
is the case for active storage.  

 
Figure 8: AP workload efficiency  
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Figure 9: AP workload, 500x500=250K tasks, 24 MB:100 ms, 

100 nodes, GCC policy, 50 GB caches/node 

5. RELATED WORK  
 Over the past decade, considerable work has been done on data 
management of distributed systems. We believe our discussion in 
the preceding sections has provided readers the necessary 
background to understand the sometimes-subtle details we now 
describe between data diffusion and other systems. 

The Stork [25] scheduler seeks to improve performance and 
reliability when batch scheduling by explicitly scheduling data 
placement operations. While Stork can be used with other system 
components to co-schedule CPU and storage resources, no 
attempt is made to retain nodes and harness data locality in data 
access patterns between tasks. 

The GFarm team implemented a data-aware scheduler in Gfarm 
using an LSF scheduler plug-in [9, 26]. Their performance results 
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are for a small system in comparison to our own results and offer 
relatively slow performance (6 nodes, 300 jobs, 900 MB input 
files, 0.1–0.2 jobs/s, and 90 MB/s to 180 MB/s data rates); 
furthermore, the papers present no evidence that their system 
scales. In contrast, we have tested our proposed data diffusion 
with 200 processors, 2M jobs, input data ranging from 1byte to 1 
GB per job, working sets of up to 1 TB, workflows exceeding 
1000 jobs/sec, and data rates exceeding 9 GB/s. 

BigTable [27], Google File System (GFS) [3], MapReduce [4], 
and Hadoop [16] couple data and computing resources to 
accelerate data-intensive applications. However, these systems all 
assume a dedicated set of resources, in which a system 
configuration dictates nodes with roles (i.e., clients, servers) at 
startup, and there is no support to increase or decrease the ratio 
between client and servers based on load; note that upon failures, 
nodes can be dynamically removed from these systems, but this is 
done for system maintenance, not to optimize performance or 
costs. This is a critical difference, as these systems are typically 
installed by a system administrator and operate on dedicated 
clusters. Falkon and data diffusion work on batch-scheduled 
distributed resources (such as those found in clusters and Grids 
used by the scientific community), which are shared by many 
users. Although MapReduce/Hadoop systems can also be shared 
by many users, nodes are shared by all users and data can be 
stored or retrieved from any node in the cluster at any time. In 
batch scheduled systems, sharing is done through abstraction 
called jobs which are bound to some number of dedicated nodes at 
provisioning time. Users can access only those nodes that are 
provisioned to them; and when nodes are released, there are no 
assumptions on the preservation of node local state (i.e., local disk 
and RAM). The tight coupling of execution engine (MapReduce, 
Hadoop) and file system (GFS, HDFS) means that scientific 
applications must be modified to use these underlying non-
POSIX-compliant file systems to read and write files. Data 
diffusion coupled with the Swift parallel programming system 
[28, 29] can enable the use of data diffusion without any 
modifications to scientific applications, which typically rely on 
POSIX-compliant file systems. Furthermore, through the use of 
Swift’s check-pointing at a per task level, failed application runs 
(synonymous with a job for MapReduce/Hadoop) can be restarted 
from the point at which they previously failed; although tasks can 
be retried in MapReduce/Hadoop, a failed task can render the 
entire MapReduce job failed. We also note that data replication in 
data diffusion occurs implicitly as a result of demand (e.g., 
popularity of a data item), while in Hadoop an explicit parameter 
must be tuned per application and typically incurs unnecessary 
performance hindering overheads. We believe Swift and data 
diffusion are more generic for scientific applications and better 
suited for batch-scheduled clusters and Grids. 

Two systems often compared with MapReduce and GFS are 
Sphere [30] and Sector [31]. Sphere is designed to be used with 
the Sector Storage Cloud and implements certain specialized, but 
commonly occurring, distributed computing operations. For 
example, the MapReduce programming model is a subset of the 
Sphere programming model, as the Map and Reduce functions 
could be any arbitrary functions in Sphere. Sector is the 
underlying storage cloud that provides persistent storage for the 
data required by Sphere and manages the data for Sphere 
operations. Sphere is analogous to Swift, and Sector is analogous 
to data diffusion, although they each differ considerably. For 
example, Swift is a general-purpose parallel programming system, 

and the programming model of both MapReduce and Sphere is a 
subset of the Swift programming model. Data diffusion and Sector 
are similar in function, both providing the underlying data 
management for Falkon and Sphere, respectively. However, 
Falkon and data diffusion have been tested mostly in LANs, while 
Sector targets WANs. Data diffusion has been architected to run 
in nondedicated environments, where the resource pool (both 
storage and compute) varies based on load, provisioning resources 
on-demand and releasing them when they are idle. Sector runs on 
dedicated resources and  focuses on decreasing the resource pool 
as a result of failures. Another important difference between Swift 
running over Falkon and data diffusion, as opposed to Sphere 
running over Sector, is the ability to run “black box” applications 
on distributed resources without any need to modify legacy 
applications; access to files are done over POSIX read and write 
operations. Sphere and Sector take the approach of MapReduce, 
in which applications are modified to support the read and write 
operations of applications. 

With respect to provable performance results, several online 
competitive algorithms handle problems in scheduling (see [32] 
for a survey) and others problems in caching (see [22] for a 
survey), but none, to the best of our knowledge, combine the two. 
The closest problem in caching is the two-weight paging problem 
[33]; it allows for different page costs but assumes a single cache.  

6. CONCLUSION AND FUTURE WORK 
Dynamic analysis of large data sets is becoming increasingly 
important in many domains. When building systems to perform 
such analyses, we face difficult tradeoffs. Do we dedicate 
computing and storage resources to analysis tasks, enabling rapid 
data access but wasting idle resources? Or do we move data to 
compute resources, incurring potentially expensive transfer costs?  

This paper studied data diffusion, which seeks to combine 
elements of both dedicated and on-demand approaches. We 
envision data diffusion as a process in which data is stochastically 
moving around in the system, through which different 
applications can reach their dynamic equilibrium. One can think 
of a thermodynamic analogy of an optimizing strategy, in terms of 
energy required to move data around (“potential wells”) and a 
“temperature” representing random external perturbations (“job 
submissions”) and system failures. This paper proposes exactly 
such a stochastic optimizer. 

The key idea in data diffusion is that we respond to demands for 
data analysis by allocating data or compute systems and by 
migrating code or data to those systems. We retain these 
dynamically allocated resources for some time, so that workloads 
with data locality can obtain the performance benefits of 
dedicated resources. To explore this approach, we have extended 
the Falkon framework to cache data at executors and incorporated 
a data-aware scheduler in the dispatcher.  

Our work is significant because of the support that data-intensive 
applications require, with the growing gap between parallel file 
system performance and the increase in the number of processors 
per system. The contributions of this paper lie in the deeper 
analysis of data diffusion at both the theoretical and the practical 
levels. We present an O(NM)-competitive algorithm for the 
scheduler, as well as a proof of its competitive ratio; define new 
heuristics to improve scheduling decisions; explore the 
effectiveness of data diffusion under varying arrival rate 
workloads; and compare data diffusion with active storage. 



 

We plan to explore more sophisticated algorithms that address 
what happens when an executor is released. Should we discard 
cached data? Should it be moved to another executor, or should it 
be moved to persistent storage? Do cache eviction policies affect 
cache hit ratio performance? Answers to these and other related 
questions will presumably depend on workload and system 
characteristics. We also have preliminary work that addresses 
data-intensive applications on petascale systems with our file-
based collective I/O primitives for loosely coupled applications 
[34]. We will explore methods of supporting data-intensive 
science, aiming for the largest scales (e.g., hundreds of thousands 
of processors) available to the open science community.  
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